Основная цель лаборатории — проведение перспективных научных исследований, подготовка высококвалифицированных кадров, разработка и проведение современных учебных курсов для завоевания университетом лидирующих позиций в области AI и BigData.
Лаборатория ведет научную работу по направлениям:
В настоящем проекте предлагается разработать программные средства-надстройку над Kubernetes – KubeSmart. Представленные в виде K8S Custom Resource Definition (CRD) данные программные модули должны учитывать схему взаимодействия размещаемых в облаке модулей между собой для выявления их взаимосвязей и более эффективного планирования использования аппаратных ресурсов облака с применением методов машинного обучения.
Актуальность данного проекта заключается в том, что используемые в настоящее время планировщики не обладают интеллектуальными алгоритмами размещения контейнеров по узлам. Они работают по принципу размещения в «первый подходящий слот».
Децентрализованные системы хранения данных позволяют потребителям осуществлять автономный контроль над своими данными и доступ к ним. Fluid Storage выигрывает у любого централизованного решения в ситуации роста страновых санкций и блокировок от региональных операторов, так как не имеет центрального хранилища.
Спрос на децентрализованное облачное хранилище быстро растет, поскольку новое поколение платформ повышает гибкость и безопасность облачного хранения, снижая при этом затраты для конечных пользователей. Некоторые децентрализованные сети хранения стремятся заменить существующих гигантов облачных хранилищ, в то время как другие стремятся работать вместе с ними, расширяя и совершенствуя свои возможности.
По сравнению с ближайшим конкурентом BTFS во Fluid Storage используются более продвинутые технологии репликации и маршрутизации, позволяющие сократить время доступа к файлам и снизить расходы на хранение.
На базе лаборатории реализуются учебные курсы программ магистратуры: «Гибридные суперкомпьютерные технологии» и «Технологии обработки больших данных». Также сотрудники лаборатории читают курс «Большие данные» в филиале МИФИ при КазНУ и участвуют в реализации различных программ дополнительного профессионального образования.
Ежегодно на базе лаборатории проходят защиты выпускных проектов магистрантов. Лаборатория публикует результаты своих исследований в материалах конференций и статьях. Полный перечень публикаций индексируемых Scopus, а также их содержание доступен на сайте https://hpclab.ru/publications.